

Poster-2-33

Experimental Toolbox for Optical Magnetometry and Ultrafast THz Spectroscopy driven by an Open Source Python-Based Software

Martin Luttmann, Malo Hervé, Fares Hasan, Hugo Gérard, Valentin Biselli, Elisa Magosso, Emma Huntley, Michele Puppin, and Gregor Jotzu

DQML, EPFL, Lausanne, Switzerland

In the Dynamic Quantum Materials Laboratory, we aim to study materials with properties that can be changed on-demand on a sub-picosecond time scale. For instance, one of our projects is to generate magnetic fields in an ultrafast manner by driving chiral phonons with THz light [1-3], and another aims at controlling the quantized magnetic flux in ring-shaped superconductors [4]. In this poster, I will present some of the experimental tools we are developing to reach these goals. They include new optical magnetometry setups based, for instance, on polarization-resolved cameras and magnetic detectors placed close to the solid of interest. I will also discuss the implementation of PyMoDAQ [5], a Python framework allowing to interface any kind of experiments in an easy, robust and reproducible way.

- [1] Jiaming Luo et al. ,Science 382, 698-702 (2023).
- [2] Basini, M., Pancaldi, M., Wehinger, B. et al. Nature 628, 534-539 (2024).
- [3] Davies, C.S., Fennema, F.G.N., Tsukamoto, A. et al. Nature 628, 540-544 (2024).
- [4] Hennadii Yerzhakov, Tien-Tien Yeh, Alexander Balatsky et al., <https://doi.org/10.48550/arXiv.2404.16276>.
- [5] S. J. Weber; Rev. Sci. Instrum. 1 April 2021; 92 (4): 045104.